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ABSTRACT 
Existing smartwatches rely on touchscreens for display and 
input, which inevitably leads to finger occlusion and con-
fines interactivity to a small area. In this work, we introduce 
AuraSense, which enables rich, around-device, smartwatch 
interactions using electric field sensing. To explore how 
this sensing approach could enhance smartwatch interac-
tions, we considered different antenna configurations and 
how they could enable useful interaction modalities. We 
identified four configurations that can support six well-
known modalities of particular interest and utility, including 
gestures above the watchface and touchscreen-like finger 
tracking on the skin. We quantify the feasibility of these 
input modalities in a series of user studies, which suggest 
that AuraSense can be low latency and robust across both 
users and environments. 
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INTRODUCTION 
Smartwatches and wearable devices promise to offer en-
hanced convenience to everyday communication and in-
formation retrieval tasks. However, because of their small 
size, the interfaces they run are often limited and cumber-
some. Existing approaches generally rely on the touch-
screen for display and input, but this is problematic because 
it inevitably leads to finger occlusion and confined interac-
tivity. To mitigate this issue, researchers have explored 
techniques to leverage the area around devices to provide 
an expanded volume for input, often described as “around-
device interaction” (ADI).  

In this work, we describe AuraSense, an off-the-shelf 
smartwatch augmented with electric field (EF) sensing. We 
found EF sensing to be particularly well suited for around 
device interaction because of several key properties: it is 
fast (~200 frames per second), low-cost (~$5), requires no 
additional instrumentation of the arm or finger, and finally, 
does not suffer from line-of-sight issues (e.g., works 
through clothing). The concept of using EF sensing was 
first proposed in Zimmerman et al. [31], however, Au-
raSense is the first work to implement and evaluate EF 
sensing in a watch form factor.  

We were particularly inspired by Goc et al.’s work that ap-
plied electric field sensing to enhance interaction on a 
smartphone display [7]. They identified two useful input 
modalities: 1) above screen 3D tracking of finger position, 
and 2) coarse movement gestures above the screen, such as 
directional swipes. We extend this work by integrating EF 
sensing into a small smartwatch form factor, explore oppor-
tunities above and adjacent to the watch, demonstrate six 
interaction modalities (Figure 1) made possible through 
new electrode configurations, which can further be dynami-
cally reconfigured for optimal sensing. Additionally, we 
quantify the feasibility and accuracy of the six modalities 
through a multi-part user study. 
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Figure 1. Six around-smartwatch modalities enabled by 
AuraSense: on-skin buttons (A), sliders (B) 2D trackpad 
(C), in-air radial input (D) and hand gestures performed 
on the smartwatch-bound arm (E) and other hand (F).  
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RELATED WORK 
Our work intersects several large bodies of literature, in-
cluding smartwatch interaction techniques, around device 
interaction, on-body sensing, and other systems that employ 
electric field sensing. We now briefly review key work. 

Expanding Smartwatch Inputs 
Interactions above or in close proximity to watches have 
been extensively explored. For example, SkinButtons [15] 
extended smartwatch interaction out onto the user’s arm by 
using small projected icons and infrared proximity sensors. 
Interactions above or in close proximity to watches have 
also been explored, for example, Abracadabra [10] and uT-
rack [2] use a magnetic ring and a magnetometer for in-air 
tracking. Ni et al. [21], Gesture Watch [12], and HoverFlow 
[14] enable similar interactions using infrared proximity 
sensors. It is also possible to capture physical touches and 
manipulation of the band [25], bezel [1] and watchface 
[28]. In general, these approaches mitigate finger occlusion 
and expand interaction beyond the limits of the small 
screen. By using EF sensing, previously unexplored in this 
domain, we enable more diverse and higher-fidelity interac-
tion modalities than prior work. 

On-Skin Touch Sensing 
Another approach to appropriating the skin for touch input 
is to overlay a sensing layer onto the skin [13,26]. Howev-
er, there are also techniques that avoid direct instrumenta-
tion, including acoustic sensing [11,16,20], infrared light 
sensing [15,17,22], camera-driven approaches [4,9], and RF 
triangulation [30]. 

Electric Field Sensing for HCI Applications 
EF sensing is a well known technique that has been previ-
ously explored for e.g., gestures [5,7,27], motion sensing 
[3], and even activity tracking [19]. Three configurations 
are common. Loading-mode inserts an electric signal into 
an electrode and measures the capacitive coupling between 
the electrode and an object of interest. Transmit-mode pass-
es a signal through the human body; the signal is captured 
by a receiver electrode touched by the user. Shunt-mode 
uses emitting and receiving electrode pairs and measures 
the disturbance when a conductive object (e.g., a finger) 
interferes with the electric field. Please refer to [24] for a 
more detailed comparison of these three configurations.  

Compared with the other two configurations, shunt-mode 
offers more robust and characteristic signals, and is more 
compatible with a watch form factor (i.e. transmit mode 
would require the insertion of a signal into the non-watch 
hand). AuraSense operates in shunt-mode, utilizing one 
transmitter and four receiver electrodes. As we will discuss, 
we vary the size, shape and physical placement of our 
transmitters and receivers to instantiate different field ge-
ometries, which in turn, naturally lend themselves to differ-
ent interactive uses. 

IMPLEMENTATION 
Our hardware prototype uses a Microchip MGC3130 elec-
tric field sensing chip [18], costing roughly $5, which we 

connect to various antenna configurations (Figures 2 and 3). 
Our setup uses one transmitter and four receiver electrodes. 
We use copper foil tape for our electrodes, covered by a 
thin layer of Mylar tape. When the transmitter and receivers 
are stacked, the Mylar insulates the two layers from one 
another. We configure the transmitter to generate an electric 
field by emitting a 115 kHz, 3Vpp square wave. The chip 
monitors each of the receiver electrodes and computes the 
field attenuation at 200 frames per second, which are re-
ported to a laptop over USB for further processing.  

For signal processing and machine learning, our classifier 
ingests 12 features. Four of these features are the raw val-
ues from the four receiver electrodes. We also compute the 
min and max values, as well as the mean and standard devi-
ation, yielding four more features. We use the per-instance 
min and max values to normalize the four raw values, 
bringing the total number of features to twelve. Although 
we experimented with other features during development, 
we found that these basic features were innately discrimina-
tive and reliable for classification. For machine learning, we 
use SVM (SMO; kernel=RBF) and SMOReg (kernel=RBF) 
for classification and regression tasks respectively [8]. 

As a further proof of concept, we instrumented an LG G 
W100 Smartwatch, allowing for live input and graphical 
output (see Figure 1 and Video Figure).  

Antenna Design Space 
Any charge-carrying surface (e.g., an electrode) can gener-
ate an electric field. This field becomes distorted when a 
conductive object (e.g., a user’s finger) becomes proximate, 
as portions of the electric field are drawn to the conductive 
object and shunted to ground. In general, EF sensing relies 
on detecting these field disturbances. This also means that 
strategic placement of the transmitter and receivers can 
greatly affect the geometry of the sensed region. 

To this end, we experimented with a wide variety of anten-
na configurations. Note that our prototype is comprised of 
one transmitter (TX) and up to four receiver (RX) elec-
trodes. Through rapid prototyping and testing, we found 
four configurations that enabled six interesting possibilities 
for around-smartwatch interaction. These input modalities 
are shown in Figure 1 and the enabling electrode geome-
tries are shown in Figure 2. Figure 3A shows a close-up of 
the antenna design A. Among the successful designs, we 

 
Figure 2. We identified four antenna configurations (A 
through D) that enabled interaction modalities of particu-
lar interest. These configurations have one transmitter 
(grey) and four receiver electrodes (red). Configuration E 
combines design C and D, placing an emphasis on interac-
tions occurring to the right of the watch. 
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found a common scheme of placing the transmitter behind 
the receiver electrodes, and also using an electrode size of 
at least 10 × 6mm. Details on electrode geometry and 
placement are discussed in the following sections. 

Dynamic Antenna Configurations 
Certain antenna configurations are better suited to particular 
input modalities. In other words, no single antenna design 
can support all of the interactions we developed for Au-
raSense. Thus, we created a prototype that featured ten 
electrodes (Figure 2E). This design combines elements 
from configurations C and D, though emphasizes interac-
tions to the right of the watch (as opposed to being fully 
symmetric, which could support all six interactions). The 
MGC3130 chip can read a maximum of five receiver elec-
trodes at once, and so we built a small multiplexing board 
(Figure 3B) that allowed us to dynamically select which 
electrodes are transmitters or receivers. This setup supports 
multiple modalities in one unified device, though only a 
single sensing modality can be active at any given time 
(e.g., requested by the currently active application).  

EXAMPLE INTERACTION TECHNIQUES 
We now describe the six interaction modalities we found 
particularly promising. In addition to offering example ap-
plications, we discuss the associated antenna design, and 
include a targeted accuracy evaluation. These modalities are 
seen in Figure 1 and demonstrated in our Video Figure. 

Although we discuss evaluation results individually (i.e., 
within each modality), it was actually run as a single, 
monolithic study. We recruited 10 participants (2 female) 
with an average age of 23. The order of the evaluated inter-
actions was randomized. For each evaluation, the corre-
sponding antenna design prototype (Figure 3C) was worn 
on participants’ wrists, like a smartwatch. The watch was 
worn on the left, since all participants were right handed. 
We then trained our system with three rounds of training 
data, and then test it in real time (i.e., evaluated live – no 
post hoc calibration, feature engineering, etc.). Any modali-
ty-specific details are discussed in their respective sections. 
For tasks with targets, we marked participants’ skin a non-
toxic, washable marker. In total, the study took one hour.  

Buttons on the Skin 
This modality places four virtual “buttons” on the skin (i.e., 
the same as Skin buttons [15]), two on each side of the 
watch, as illustrated in Figure 1A and 4. Using antenna de-
sign B—which pairs one virtual button to one receiver—we 
can sense whether a finger has clicked a skin-bound button.  

For the evaluation, we marked the skin surrounding our 
prototype watch with four crosshairs, located 10mm from 
the side of the watch and separated 15mm vertically (as 
illustrated in Figure 4). We trained the system by having 
participants click the crosshairs one time each, in a random 
order, three training rounds. We then trained a five-class 
SVM – one class for each of the four buttons and fifth class 
for no touch. In round four, tested live, the four buttons 
were 92.7% accurate, (SD=7.0%) with no touch achieving 
100% accuracy. 

Sliders on the Skin 
We found that placing all four receivers on one side of the 
watch (Figure 2, antenna design C) enabled high fidelity, 
continuous sensing on that side. This is well suited for ab-
solute or relative scrolling or sliding along the skin directly 
next to the watch face (Figure 1B). 

To evaluate this input modality and antenna configuration, 
we drew a 40mm long line on participants’ skin, parallel to 
the left side of the watch, offset by 10mm. We then marked 
this line with four ticks spaced 10mm apart vertically, num-
bered 1 through 5. A round of data collection consisted of a 
user placing a finger on an announced tick number, after 
which one trial was recorded. Participants were then asked 
to slide the finger to another tick number (random order). 
The tick number and EF sensed features were used to train 
a SVM regression model (RBF kernel, γ=0.6). The fourth 
round, which followed the same process as above, tested 
the accuracy live, and showed a mean absolute distance 
error of 2.0mm (SD=2.0mm). 

Trackpad on the Skin  
We also used antenna design C to see if it was possible to 
support not just 1D finger tracking—as discussed in the 
previous section—but also 2D tracking, like a trackpad on 
the skin (Figure 1C). 

To evaluate this modality, we drew a 3 × 3 pattern of cross-
hairs to the left of the watch (offset 10mm from the watch, 
with an grid spacing of 10mm, illustrated in Figure 5). As 
before, we collected three rounds of training data, with each 

 
Figure 4. Average mean errors for virtual buttons on the 

skin. Not touch, a fifth class, was 100% accurate. 
 

 
Figure 3. A: Close-up of the antenna design A (from Fig-
ure 2). B: Our custom PCB for dynamic antenna configu-

ration. C: Four antenna design prototypes. 
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round consisting of a single touch to each crosshair (ran-
dom order). In this case, two SVM regression models (RBF 
kernel, γ=0.6) were trained – one for X-axis tracking, and 
another for the Y-axis. Finally, we evaluated the regression 
accuracy in a live test. The results, depicted in Figure 5, 
reveal a mean distance error of 7.2mm (SD=6.0mm).  

Radial Input 
The three previous modalities all utilize the skin as a physi-
cal surface on which interactions can be triggered. Howev-
er, it is equally possible to utilize the free-space around the 
watch for interaction. In this modality, we consider radial 
input (Figure 1D) around the periphery of the watch (simi-
lar to e.g., Abracadabra [9], but which required a magnetic 
ring). We found that antenna design D, which featured four 
upward-facing receivers arranged in a grid, performed best. 

To evaluate this modality and design, we asked participants 
to position a finger at one of eight possible angles (45°, 90°, 
135°, … 360°), requested once each, in a random order. 
Three rounds of data were collected and used to train a sin-
gle SVM regression model (RBF kernel, γ=0.3). We then 
ran an identical procedure, but recorded the live classifica-
tion output, which resulted in an average angular error of 
18.0° (SD=20.1°).  

Smartwatch-Arm Hand Gestures  
When experimenting with antenna design A, we found that 
movements of the hand on the same arm as the smartwatch 
(i.e., the “smartwatch-arm”) affected the EF signal. In re-
sponse, we explored the feasibility of supporting static hand 
poses (Figure 1E), which could operate in parallel with the 
previously describe techniques. This is inline with previous 
work [6,23,29] that detects hand gestures for smartwatch 
manipulation. We built an exemplary hand gesture set, seen 
in Figure 6 (top row).  

To test accuracy, we had participants perform each of the 
hand gestures in a random order (i.e., one round of data 
collection). We then repeated this process for two more 
rounds. We used this collected data to train a multi-class 
SVM (RBF kernel, γ=0.7). As usual, we used round four to 
test the accuracy live. Overall, the gesture set achieved a 
mean accuracy of 88.8% (SD=8.15%). 

Free-Arm Hand Gestures  
It is also possible to use the other hand (i.e., non-
smartwatch-arm) for gestural input above the watch face 
(Figure 1F). This interaction has been shown in previous 

work using other sensing methods [12,14]. We found that 
antenna D, also used for radial input, offered the most re-
sponsive and distinctive signal. We developed a different 
hand gesture set, shown in Figure 6 (bottom row). Using the 
exact same procedure as the previous study, we found a 
mean gesture recognition accuracy of 82.8% (SD=13.3%). 

EXAMPLE USES  
The input modalities we described could be used to power a 
wide variety of interactive applications on smartwatches. 
For example, when the screen is off, AuraSense could an-
ticipate the user is ready for interaction (e.g., detecting 
nearby finger), and automatically activate the display. With 
the screen now active, the user could circle his finger above 
the watchface (radial input) to browse different applica-
tions. Touching the screen would launch the selected item. 
In addition to manual selection, the user could also launch 
global actions with “letter gestures”. For example, drawing 
an “M” on the skin (trackpad) could launch a music app. 

When in the music app, on-screen buttons (ones too small 
for accurate finger presses) could be located on the sides of 
the interface. The user can press, e.g., “playlists”, by tap-
ping the skin adjacent to the label (buttons). To browse 
songs in the playlist, the user could scroll up and down on 
the skin (slider). Tapping the screen would start playing the 
selected song. To move backwards or forwards through 
playlists, users could perform “flap up” or “flap down” ges-
tures with the smartwatch arm (Figure 6, B & C). If a 
phone call comes in, the user can perform a “shhh” (Figure 
6G) gesture using the free arm to silence the incoming call.  

LIMITATIONS  
One of the most significant limitations of our setup was 
signal drift. Specifically, the MGC3130 chip obtains rela-
tive electric field readings based on parameters captured 
during an initial calibration procedure. Over time (on the 
order of minutes), the signal begins to drift and an undesir-
able offset is produced. To mitigate this issue, it may be 
possible to use an adaptive baseline, or perhaps machine 
learning features that are based on relative values between 
electrodes, rather than absolute values. Additionally, EF 
sensing is also susceptible to ambient electrical noise, such 
as environmental EM noise. Adaptive background subtrac-

 
Figure 6. Our “smartwatch-arm” (top) and “free-arm” (bot-
tom) gesture sets. Per-gesture recognition accuracies inset. 

 
Figure 5. Tracking accuracy across a 3 × 3 grid. The circles 

represent the average mean error, and are rendered to scale.  
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tion might help mitigate this issue. Finally, the small form 
factor of a smartwatch limits electrode size and also the 
maximum distance between transmitter and receiver pairs. 
We found this generally limited finger sensing range to a 
few centimeters, permitting only close interactions.  

CONCLUSION 
AuraSense is a technique for supporting multiple around-
device interaction modalities on smartwatches using electric 
field sensing. Although this sensing technique has been 
widely used, we are the first to use it for worn input with a 
smartwatch form factor. To explore the design space, we 
prototyped a variety of antenna configurations and identi-
fied four designs that enabled previously identified, promis-
ing input modalities. We built several prototypes, including 
one that can dynamically switch between different antenna 
configurations, thus enabling high fidelity sensing for a 
particular input modality. Finally, we conducted a multi-
part user study to help quantify the basic feasibility and 
accuracy of the six example interaction modalities. 
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