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ABSTRACT  
We present Tomo, a wearable, low-cost system using Elec-
trical Impedance Tomography (EIT) to recover the interior 
impedance geometry of a user’s arm. This is achieved by 
measuring the cross-sectional impedances between all pairs 
of eight electrodes resting on a user’s skin. Our approach is 
sufficiently compact and low-powered that we integrated 
the technology into a prototype wrist- and armband, which 
can monitor and classify gestures in real-time. We conduct-
ed a user study that evaluated two gesture sets, one focused 
on gross hand gestures and another using thumb-to-finger 
pinches. Our wrist location achieved 97% and 87% accura-
cies on these gesture sets respectively, while our arm loca-
tion achieved 93% and 81%. We ultimately envision this 
technique being integrated into future smartwatches, allow-
ing hand gestures and direct touch manipulation to work 
synergistically to support interactive tasks on small screens.  
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INTRODUCTION  
Tomography analyzes the inner structure and composition 
of objects by examining them with excitations such as elec-
tricity and radiation in a cross-sectional manner [4]. Electri-
cal Impedance Tomography (EIT), proposed by Webster 
[13] in 1978, uses pair-wise impedance measurements from 
surface electrodes surrounding an object to recover the im-
pedance distribution of the inner structure [7]. Compared 
with other tomographic methods such as CT scans (x-rays), 
PET scans (gamma rays) and magnetic resonance imaging, 
EIT is non-invasive and relatively cheap. It has been widely 

applied in the medical domain for the assessment of cardiac 
function, pulmonary hypertension, and lung function [7]. 

Since its introduction in the early 1980s, EIT instrumenta-
tion has continued to evolve in step with advances in elec-
tronics. However, even today, medical EIT systems contin-
ue to be relatively large and expensive, precluding integra-
tion into consumer electronics. This may be the chief reason 
why the technique has not been utilized in the Human-
Computer Interaction domain, despite its great promise.  

In this paper, we describe our efforts to create a small, low-
powered and low-cost EIT sensor, one that could be inte-
grated into consumer worn devices, such as smartwatches. 
Achieving these design properties comes at the cost of re-
duced precision and resolution compared to medical EIT 
systems. However, as we will show, our system is still able 
to resolve considerable detail. This ability to non-invasively 
look inside a user’s body (Figure 1) opens many new and 
interesting application possibilities. For example, muscles 
change their cross-sectional shape and impedance distribu-
tion when flexed. Therefore, as a proof-of-concept applica-
tion domain, we use our EIT sensor for hand gesture recog-
nition. We call this system Tomo – a sensing armband that 
can be worn on the wrist or arm (Figure 1). 

RELATED WORK 

Worn Gesture Recognition Approaches  
Hand gestures extend interaction of computers beyond 
clicking and typing. One approach to gesture recognition is 
through computer vision. Pervious work has attached cam-
eras to users’ wrists, pointing towards the hand, in order to 
recover a 3D hand pose model [15,24]. However, these 
systems have steep computational requirements and are 
fairly bulky, as they need line of sight to the fingers. 

  
Figure 1. Tomo worn on the arm (left) and wrist (right) with 

reconstructed images of the interior shown in the background. 
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Another approach is to attach accelerometers and gyro-
scopes to a user’s wrist and fingers [17]. Accuracy largely 
depends on the position of the sensors, since the efficiency 
of the data to reveal hand gestures decays quickly as sen-
sors move away from the fingers and towards the wrist or 
forearm. For example, Xu et al. [25] investigated hand ges-
ture recognition using data collected from the wrist; the 
system supports dynamic hand motions (e.g., wiggling of 
the fingers), but not static hand poses (e.g., finger pinches). 

Other researchers have capitalized on the change of arm or 
wrist contour when hand gestures are performed. Pressure 
sensors, often integrated into a band, can rest on a user’s 
skin and measure the change of contour [8,14]. Fukui et al. 
[11] and SkinWatch [16] built wristbands with IR proximity 
sensors to recover wrist contour. From our investigations, 
we have found contour-based methods are easily affected 
by changes in band tightness, clothing and arm movements.  

There is also a growing body of research that uses electrical 
signals generated by muscle activation (i.e., Electromyog-
raphy) for gesture recognition [20,21]. In general, this re-
quires “wet” electrodes and/or placement on larger muscle 
groups (e.g., upper forearm) for there to be a sufficient sig-
nal-to-noise ratio (SNR). 

Bio-Impedance & Bio-Capacitive Sensing  
More similar to Tomo are approaches that use bio-
impedance or bio-capacitive sensing. In the consumer do-
main, this sensing has been used for e.g., digital scales with 
body fat sensing capabilities [10,22]. In the research do-
main, Touché [19] recognizes complex configurations of 
human hands and objects based on the change of impedance 
by electrically exciting objects with a swept-frequency sig-
nal. Of note, these systems use a single transmitter and re-
ceiver. In contrast, Tomo uses many transmitter/receiver 
pairs, but only a single frequency.  

Most similar to our work are methods that use many elec-
trodes. Similar to our setup, Cornelius et al. [6] measures 
cross-sectional impedances between all pairs of eight elec-
trodes resting on a user’s forearm. This is used to recognize 
the wearer for authentication purposes. Cheng et al. [5] cre-
ated a neckband to measure the capacitance of a users’ neck. 
Neck-related events, such as head motions, speaking, 
coughing, and swallowing can lead to significant and dis-
tinguishable changes in capacitance distribution, which can 
then be used for activity recognition.  

Lastly, GestureWrist [18] detects changes in wrist contour 
by measuring the capacitance between a series of electrodes 
integrated into a wristband. Importantly, this only measures 
the contact condition of an electrode to the skin (roughly 
proportional to pressure), and not the inner impedance. Fur-
thermore, GestureWrist does not use a multiplexed, pair-
wise sensing scheme, instead relying on a fixed transmitter 
and seven receivers. Two hand gestures are described, but 
accuracy is not evaluated.  

ELECTRICAL IMPEDANCE TOMOGRAPHY 

Electrode Scheme 
Electrical Impedance Tomography (EIT) recovers the inner 
impedance distribution of objects using pair-wised meas-
urements from surface electrodes surrounding an object [7]. 
Four-terminal and two-terminal schemes are the most prev-
alent measurement strategies. We used a two-terminal 
scheme in this work to reduce system complexity. 

Image Reconstruction 
To generate the reconstructed interior image, we used Line-
ar Back Projection (LBP), one of the most popular recon-
struction algorithms for industrial applications. Compared 
to other algorithms, it is less computationally expensive, 
and thus well suited for real-time image reconstruction. 
Many other image reconstruction techniques exist; see [7] 
for an extended discussion.  

IMPLEMENTATION 

Electrode Band 
As seen in Figures 1 and 2, we fabricated an electrode band 
that could be worn on the forearm and wrist. We made the 
band with eight evenly spaced copper electrodes. The elas-
ticity of the band could be adjusted to provide a firm con-
tact between the electrodes and users’ skin.  

Sensor Board 
We designed our bio-impedance sensing board (Figure 2) 
around an AD5933 Impedance Analyzer [3]. This chip in-
cludes a frequency generator and on-board ADC that allows 
impedance measurement at a specific frequency between 
0Hz and 100KHz with a resolution of 0.1Hz. We used an 
excitation signal of 40KHz, which we found revealed the 
most distinguishable features of gestures during piloting. 
Our sensing board also included two 8-to-1 multiplexers 
(ADG1608), which allowed us to select any two of the elec-
trodes as the transmitter and the receiver.  

Our sensing board cost roughly $40 to build in individual 
quantities. The most expensive part was the AD5933 chip 
(~$20). Undoubtedly, a mass produced version could be 
made more compact and at lower cost. We also measured 
our sensor board’s power consumption when worn and fully 
functioning. The result indicated a power consumption of 
approximately 50 mW, not including Bluetooth power con-
sumption (moot if our technique was integrated directly into 
a smartwatch). Overall, this suggests EIT could be integrat-
ed into future mobile electronics (for reference, the Apple 
Watch 2015 contains a 780 mWh battery).  

 
Figure 2. Left: Anatomy of the human forearm. Center:  

Our prototype electrode band. Right: Tomo sensing board. 

 



Bio-impedance Acquisition 
Internally, the AD5933 computes the Discrete Fourier 
Transform (DFT) of 1024 samples and returns real R and an 
imaginary I values. This process takes around 3ms. The 
magnitude of the DFT is given by                                         . 
Following the calculation process described in the AD5933 
manual [3], we computed the impedance as: 

Impedance = 1
Gain Factor×Magnitude

 

where the Gain Factor was computed by calibrating each 
electrode pair with a 10kΩ resistor.  

An Arduino Pro Mini was interfaced with our sensing board, 
and reported the calculated impedance to a laptop over 
Bluetooth. The impedances between all electrodes pairs 
were measured sequentially without repetition, which re-
sulted in 28 independent values (see Figure 4). The system 
achieved a sample rate of 10 frames per second (with each 
frame containing 28 sensor-pair values), which was suffi-
ciently fast for real-time interaction. 

Machine Learning  
Our 28 values of cross-sectional impedance were used as 
features for classification. As illustrated in Figures 3 and 5, 
even simple gestures result in significant changes in the 
inner impedance distribution. We also computed the differ-
ences of all pairs (without repetition) of the 28 impedance 
measurements, producing 378 additional features. We 
found these relative measurements made our classifier more 
robust to global changes in bio-impedance over time. In 
total, this yielded 406 features. We used a support vector 
machine (SVM) implementation provided by the Weka 
Machine Learning toolkit for classification (SMO; polyno-
mial kernel with default parameters) [12].  

USER STUDY 
We recruited 10 participants (3 female), all right handed, 
with a mean age of 24. The study had two phases, and took 
approximately one hour to complete; participants were paid 
$10 for their involvement. As all of our participants were 
right handed, the system was worn on the left forearm, the 
conventional location for wearing a watch.  

Gesture Sets 
In order to compare the accuracy of our approach to previ-
ous research, we adopted a widely used [8,15,24] thumb-to-
finger pinch gesture set: Index Pinch, Middle Pinch, Ring 
Pinch, and Little Pinch (illustrated in Figure 3). We also 
created a hand gesture set, designed around coarse motions 
of the hand. This gesture set included Fist, Stretch, Right, 
Left, Thumbs Up, Spider-Man and Index Pinch (Figure 3). 
We also included a Relax gesture in both sets as the neutral 
state, bringing the total number of gestures in the pinch and 
hand sets to five and eight respectively.  

Procedure 
Our study had two phases of data collection, serving differ-
ent experimental purposes. Data from phase one was used 
for evaluating within-user accuracy, the volume of training 
data needed, and cross-user accuracy (i.e., universality). 
Data from phase two was used for evaluating reproducibil-
ity. Within each phase, data was collected first from the arm 
and then from the wrist location; the two gesture sets were 
collected simultaneously. 

After a brief introduction, phase one began. Participants 
were fitted with our wrist- and arm-bands simultaneously. 
Of note, unlike most electromyography (EMG) systems, 
our approach does not require any conductive gel or other 
special preparation of the skin. Once comfortable, partici-
pants were asked to perform one gesture at a time. Gestures 
were requested visually on a laptop screen in a random or-

 

 

 
Figure 3. Visualization of sensor data for different hand gestures when Tomo is worn on the wrist. 

(top: raw impedance data; middle: reconstructed difference image; bottom: hand gestures) 

 

 
Figure 4. Example plot of 28 impedance measurements  
from all electrode pairs. Figure 2, left, provides a key  

to the sensor-pair lettering. 
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der. Participants were asked to hold the gesture until a beep 
was emitted from the laptop; this period lasted one second, 
during which time 10 data points were recorded. Partici-
pants were not provided with any feedback (e.g., verbal or 
graphical) during data collection to prevent them from ad-
justing their gestures to adapt to classification results. A 
single round of data collection was complete once all ges-
tures had been requested. In total, we collected 10 rounds of 
data for each sensor position. This procedure resulted in 
22,000 data points (10 participants × 2 sensor positions × 
10 rounds × 11 gestures × 10 data points).  

Participants were then given a ten-minute break, where the 
bands were removed. Following the break, the bands were 
replaced on the arm and wrist (as close to the original loca-
tions as possible), and phase two began. Participants fol-
lowed the same process as described above, except that 
gestures were only requested once (i.e., one round) for each 
sensor position, gathering an additional 2,200 data points.  

RESULTS  
The central questions we wished to answer in our evalua-
tion were: 1) What is the accuracy of our system? 2) How 
much training data is needed to initialize our classifiers? 3) 
How stable is the data collected by our approach, both 
across users and time?  

Within-User Accuracy 
Because users have different bodies, most bio-sensing sys-
tems require per-user classifiers (e.g., electromyography 
[20,21,23], bio-acoustics [1,9]). Using data collected during 
phrase one, from a single user at a time, we trained our 
classifier on nine rounds of data, testing on a tenth. This 
procedure ensured that data points adjacent in time (which 
will naturally tend to be more similar) were either in the test 
set or train set, but never both. We evaluated all train/test 
combinations and averaged the results per user.  

For the hand gesture set, the wrist location achieved a mean 
accuracy of 96.6% (SD=2.8%). Meanwhile, the arm loca-
tion achieved a mean accuracy of 93.1% (SD=4.7%). A 
major source of error was the confusion between Fist and 
Thumbs Up, contributing 28% of the misclassifications. 
Figures 6 and 8 provide confusion matrices and an over-
view of the accuracy results. 

For the pinch gesture set, the accuracy of the wrist location 
was 86.5% (SD=10.1%). The most confused gestures were 
Ring Pinch and Little Pinch, contributing 27% of the mis-
classifications. The arm location achieved an accuracy of 
80.9% (SD=10.2%). In this case, Index Pinch and Ring 
Pinch confusion contributed 14% of the misclassified in-
stances. Figures 7 and 9 provide confusion matrices and an 
overview of the accuracy results. 

Our accuracy results compare favorably to other bio-
sensing gesture recognition systems with respect to accura-
cies and number of gestures supported. The EMG-based 
system created by Saponas et al. [21] supported the pinch 
gesture set at 77.0% accuracy (and required conductive gel 
to provide sufficient SNR). WristFlex [8], which used pres-
sure sensors, demonstrated 69.0% accuracy (when provid-
ing no feedback during the study, same as our procedure). 
For reference, Tomo achieved accuracies of 86.5% and 80.9% 
for this gesture set when worn on the wrist and arm respec-

 

 

 
Figure 5. Visualization of sensor data for different hand gestures when Tomo is worn on the arm. 

(top: raw impedance data; middle: reconstructed difference image; bottom: hand gestures) 
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Figure 6. Confusion matrix of the hand gesture set when  
Tomo is worn on the wrist (left) and on the arm (right). 

Wrist Location Arm Location 

  
Figure 7. Confusion matrix of the pinch gesture set when  
Tomo is worn on the wrist (left) and on the arm (right). 



tively, which is an improvement, though falls short of im-
mediate commercial feasibility.  

There is no widely used set of hand gestures that we can use 
to compare our system. However, we can make rough com-
parisons to other systems based on number of gestures sup-
ported, and accuracy results when provided. For example, 
[18] used two gestures, while [17] used four. Unfortunately, 
no accuracies are reported, but given the small size of the 
gesture sets, we can presume the presented sets were at the 
upper end of feasibility. Fortunately, [14] does provide 
evaluation results, which demonstrates 95.4% accuracy 
with six gestures. For reference, our eight hand gestures 
achieved 96.6% and 93.1% when worn on the wrist and arm.  

Volume of Training Data 
To better understand how much training data is needed be-
fore classifiers are sufficiently robust, we ran an experiment 
varying the size of the training set (phase one data only). 
Specifically, we first trained the SVM on round 1 data, test-
ing on round 2. We then trained on rounds 1 and 2, and 
tested on round 3, and so on up to rounds 1 though 9 being 
used for training and testing on round 10. The results of this 
analysis are shown in Figure 10. In general, accuracy in-
creased quickly, and largely plateaued by around 50 train-
ing instances per gesture.  

Reproducibility  
The ideal bio-sensing system is stable overtime, and does 
not need to be re-trained each time the device is worn. To 
assess this stability, we trained a SVM on all phase one data 

from a single participant and tested on that participant’s 
phase two data. We evaluated all participants and combined 
the results (Figure 8 and 9).  

Across all conditions, absolute accuracy dropped by 21.6%. 
The drop was more precipitous for wrist placements (29.1%) 
compared to arm placements (14.0%). It appeared certain 
gestures were more impacted than others. For example, the 
Right gesture dropped 5.2% in accuracy, while Ring Pinch 
dropped 42.3%. This suggests there may be gesture sets that 
are more robust overtime.  

Universality 
We also wished to test the universality of our system – that 
is, whether a classifier could be created that works across 
users, without having to train on the wearer first. To test 
this, we combined data from nine participants into a single 
training set, and used a tenth participant for testing. We 
evaluated all train/test combinations and averaged the re-
sults (Figure 8 and 9). The results clearly showed infeasibil-
ity for a universal classifier; at least at the scale of training 
data we collected. Accuracy across sensor position and ges-
ture set condition was poor: 47.2%. 

Looking at the confusion matrices, we found five gestures 
(Relax, Fist, Stretch, Right and Left) that retained accura-
cies above 70% (hand gesture set, sensor on arm). This may 
suggest that these five gestures are more universal. In re-
sponse, we trained another universal (cross-user) classifier 
with only these five gestures supported: Accuracy rebound-
ed to 82.6% (SD=16.2%). 

Sensor Location  
Gestures in the pinch set employed similar muscle move-
ments, and as a result, they were more easily confused with 
each other compared to hand gestures. We also found that 
the wrist location beat the arm, in both gesture sets, with 
respect to within-user accuracy. Conversely, the arm loca-
tion yielded better reproducibility and universality. Howev-
er, the differences are small and merit further investigation.  

SMARTWATCH INTEGRATION 
As an interactive demo, we instrumented the wrist strap of a 
Samsung Galaxy Gear 2013 Smartwatch with eight elec-
trodes (Figure 11). Our sensor board was attached to the 
underside of the watch, though obviously everything would 
be tightly integrated in a consumer device. Our sensor 

 
Figure 10. The volume of training data was varied  

to see how performance was affected. 

 
Figure 8. Accuracy of hand gesture set. 

 

 
Figure 9. Accuracy of pinch gesture set. 

 



board transmitted data to a laptop over Bluetooth, which 
performed classification and controlled the smartwatch in-
terface over a persistent web socket. 

We created a simple interaction sequence, utilizing four 
hand gestures (see Video Figure). In this example, a user 
can navigate through a series of messages with Left and 
Right gestures. If desired, a message can be opened with a 
Fist gesture and return to the list with a Stretch gesture. If a 
phone call is received, it can be dismissed with a Left ges-
ture, or expanded with a Fist gesture.  

LIMITATIONS  
Our results suggest that a general, cross-user classifier is 
currently infeasible, and thus, per-user training would be 
required. Although an annoyance from a user experience 
perspective, we believe the biggest limitation is reproduci-
bility. The simple fact is, the human body changes and is in 
constant motion, which makes sensing challenging. Further, 
bio-sensing methods tend to be placement sensitive, and 
EIT is no exception. Moreover, since we do not use gel or 
any preparation of the skin, contour changes in the wrist 
and arm can affect the contact condition between electrodes 
and users’ skin. Environmental interference can also affect 
the measured impedance. For example, we found persistent 
electromagnetic interference (EMI) at several frequencies, 
most notably around 50KHz, caused by fluorescent light 
ballasts. Partly for this reason, we chose an excitation signal 
of 40KHz, which was reasonably free of ambient noise.   

FUTURE WORK 
In our immediate future work, we hope to find approaches 
that mitigate issues surrounding reproducibility and univer-
sality. A major contributing factor to these limitations is 
varying placement of the electrodes, which change slightly 
each time the device is worn, and certainly across users. As 
shown in recent work by Amma et al. [2], higher resolution 
electrode arrays can be used to compensate for differences 
in placement, essentially by digitally rotating the signal to a 
uniform position, from which machine learning features can 
then be generated. We also believe superior band ergonom-
ics and electrode material would yield a more stable signal, 
as would a four-terminal EIT sensing configuration. Finally, 
we hope to improve the frame rate of our work by replacing 
the AD5933 chip with a separate DDS and ADC. This 
should allow Tomo to support continuous gesture sets and 
overall, more dynamic applications. 

CONCLUSION 
We have presented Tomo, a wearable, low-cost and low-
powered Electrical Impedance Tomography system for 
hand gesture recognition. It measures cross-sectional bio-
impedance using eight electrodes on the wearers skin. Us-
ing 28 all-pairs measurements, our software can recover the 
interior impedance distribution, which is then fed to a hand 
gesture classifier. We evaluated two gesture sets (hand and 
pinch sets) and two body placements (wrist and arm). User 
study results show that our approach can offer high accura-
cy hand gesture recognition when the system is trained on 
the wearer. However, like most other bio-sensing systems, 
results degrade when the system is re-worn at a later time, 
or worn by other users.  
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