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ABSTRACT 
Electrical Impedance Tomography (EIT) was recently em-
ployed in the HCI domain to detect hand gestures using an 
instrumented smartwatch. This prior work demonstrated 
great promise for non-invasive, high accuracy recognition 
of gestures for interactive control. We introduce a new sys-
tem that offers improved sampling speed and resolution. In 
turn, this enables superior interior reconstruction and ges-
ture recognition. More importantly, we use our new system 
as a vehicle for experimentation – we compare two EIT 
sensing methods and three different electrode resolutions. 
Results from in-depth empirical evaluations and a user 
study shed light on the future feasibility of EIT for sensing 
human input.  

Author Keywords 
Electrical Impedance Tomography; EIT; hand gestures; 
smartwatch; bio-impedance; biometrics; input. 

ACM Classification Keywords 
H.5.2. [Information interfaces and presentation]: User inter-
faces – Input devices and strategies. 
INTRODUCTION 
Tomography is an imaging technique that estimates the 
cross-sectional interior structure of objects through the use 
of an external, penetrating signal [27]. In this work, we use 
Electrical Impedance Tomography (EIT) [10,22], which 
uses surface electrodes and high frequency alternating cur-
rent (AC) to measure internal electrical impedance. By 
placing many electrodes around an object, it is possible to 
reconstruct the internal impedance distribution and infer the 
interior structure [10]. EIT is safe for long-term continuous 
operation (low voltage, no ionizing radiation), non-invasive 
to the wearer (rests on skin without the need for e.g., con-
ductive gel) and can be made inexpensive (~$50). For these 
reasons, we recently adapted the technology for use in a 
gesture-sensing smartwatch called Tomo [43]. 

Tomo provided a glimpse into the applicability of EIT for 
input sensing. To further expand the feasibility of this 
promsing technique, we sought to explore technical 
improvements to low-cost, worn, EIT sensing. The most 
obvious parameter that can be varied is the number of elec-
trodes. Intuitively, more electrodes will produce a denser 
mesh of sensed paths (Figure 1), which should yield a supe-
rior reconstructed image.  

In addition to varying the number of electrodes, EIT sys-
tems can also choose between two very different types of 
EIT sensing (see e.g., [1,11] for more details). The first 
method is “two-pole” sensing, in which impedance meas-
urements are captured from each pair of skin electrodes – 
one acting as an emitter and the other as a receiver. This 
method is affected by skin impedance [1,8,20] and so larger 
electrodes are typically used for greater contact area with 
the skin, precluding dense electrode arrays. However, this 
approach is popular due to its technical simplicity. 

Alternatively, EIT systems can use a more sophisticated 
“four-pole” scheme, which excites an adjacent pair of elec-
trodes with an AC signal and measures the voltage between 
another pair of electrodes (Figure 5). This process is repeat-
ed for all possible emission and measurement pairs. This 
differential measurement approach makes four-pole sensing 
less sensitive to contact conditions at the skin [1,15].   

We built our EIT system such that it could toggle between 
two- and four-pole sensing schemes, as well as 8-, 16- and 
32-electrode configurations (i.e., six EIT configurations in 
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Figure 1. The number of sensed paths (grey lines) dramatically 

increases as electrode count grows (red dots). For reference, 
Tomo [43] uses a two-pole, 8-electrode scheme (upper left).  
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total). We used this setup as a vehicle for experimentation, 
allowing different EIT schemes to be readily and directly 
compared. As we will discuss, we used a variety of con-
trolled baselines to compare and discuss performance 
tradeoffs and accuracy gains. We also replicated the user 
study in Tomo [43] to see how hand gesture recognition 
accuracy varies across our sensing conditions. 

RELATED WORK 
Our work broadly intersects with two large research do-
mains: 1) hand gesture sensing from a wrist- or arm-worn 
device, and 2) electrical impedance tomography.  

Wrist Gesture Sensing 
Humans naturally gesture with their hands, which can form 
many static poses and kinetic gestures. For this reason, they 
have long been studied for controlling interactive systems. 
For example, Digits [28] reconstructed a 3D model of the 
hand using a wrist worn camera, while Way et al. [40] used 
a time-of-flight camera to sense small free-hand gestures. 
Similarly, zSense [39] used infrared sensors deployed on a 
ring or smartwatch to detect both static and dynamic poses. 
Other systems have leveraged IMUs on the wrist to detect 
dynamic hand motions such as finger rubbing and hand 
waving [29,41]. Researchers have also utilized arm contour 
changes that occur when performing different hand ges-
tures, including sensing capacitance [32], pressure [13,26], 
and proximity [17]. 

More similar to our work are systems that use bio-sensing. 
For example, electromyography (EMG) senses the electri-
cal signals produced by muscle activation. Saponas et al. 
[33,34] built an EMG-based system that supported 4 pinch 
gestures at 79% accuracy. Another popular approach is bio-
acoustics, which use vibrations that propagate through the 
body upon performing hand gestures. For example, Ham-
bone [14] used contact microphones to detect 4 gestures 
with ~90% accuracy. The Sound of One Hand [3] used a 
similar setup to detect finger gestures such as rub, tap, and 
flick. Skinput [21] also leveraged bioacoustics to detect 8 
flicking/pinching gestures at 87.3% accuracy.  

EIT Image Reconstruction 
Tomographic image reconstruction is well studied in the 
signal processing literature, and a number of popular algo-
rithms exist. A good overview of current approaches can be 
found in [38]. The basic goal of EIT image reconstruction is 

to obtain the “conductivity image” of the interior of an ob-
ject. The interior is discretized using a finite element meth-
od to generate a mesh, and the conductivity at each mesh 
element is computed. Generally, finer meshes provide high-
er resolution output images but increase the computational 
requirements. 

Early algorithms were based on linear back-projection (e.g., 
[9]), which is commonly used for PET and CT image re-
construction (using gamma and X-rays respectively). This 
technique assumes that the electrical current travels approx-
imately along certain fixed equipotential lines. However, as 
this does not accurately capture the complete 3D movement 
of the electric signals, accuracy can be limited [42]. Tomo 
[43] employed this method to obtain computationally inex-
pensive and straightforward image reconstruction. 

More recent methods use least-squares optimization to find 
the “best-fit” image [38]. To solve this nonlinear problem, 
systems often employ Newton-Raphson or Gauss-Newton 
iteration, which are computationally expensive. For real-
time use, sophisticated single-iteration methods, such as the 
maximum a posteriori estimator [2], are able to produce 
acceptable images rapidly after performing significant pre-
computation. We use the latter approach. 

Applications of Electrical Impedance Tomography 
Electrical Impedance Tomography has been applied to 
many application domains. For example, due to its safe and 
non-invasive nature, it has been widely used in clinical 
applications such as sensing lung ventilation [35], brain 
function [25] and blood flow [19]. EIT has also seen use in 
geophysics (e.g., monitoring mountain permafrost [23]), 
environmental science (e.g., underground pollutant 
detection [12]), biology (e.g., tree inspection [36] and 
industrial monitoring (e.g., measuring liquid flow [16]).  

Our previous Tomo system [43] showed that two-pole EIT 
could be made compact and low cost, making it more ame-
nable for use in consumer electronics. Tomo used an off-
the-shelf AD5933 impedance converter chip for measuring 
bio-impedance, which takes 3.6 milliseconds to perform 
one measurement. Sensing all combinations of its 8 elec-
trodes (28 pairs) to generate a single image frame takes 
roughly 100 ms, yielding a frame rate of 10 Hz. Unfortu-
nately, this hardware cannot easily scale to 16 and 32 elec-
trode configurations, which have 120 and 496 electrode 
pairings respectively (see Table 1). 

As we will describe in greater detail in the next section, our 
new EIT system uses both custom hardware and software, 
granting us tight control over the entire sensing pipeline. In 
contrast to Tomo, our system can complete a single meas-
urement in just 0.33 ms, which allows us to achieve 
100 frames per second in a two-pole, 8-electrode configura-
tion. More interestingly, it enables us to scale to greater 
numbers of electrodes (Table 1). This, in turn, offers supe-
rior sensing accuracy, as we discuss in our evaluation.  

 
Table 1. Performance characteristics of Tomo and our new 

setup. We extrapolate hypothetical performance (grey region) 
for 16 and 32 electrode versions of Tomo. 
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IMPLEMENTATION  
Our setup has two main components: a wristband (Figure 
2), which features an array of electrodes to be worn by a 
user, and a custom-designed data capture and processing 
board. Our board is built around a Cortex-M4-based Teensy 
3.2 system-on-chip (SoC), augmented with a voltage con-
trolled current source (VCCS), direct digital synthesis 
(DDS) IC, and ADC preamp (Figure 3). The board also 
features multiplexers that allow for dynamic electrode se-
lection, enabling different EIT configurations. A schematic 
view of our system is shown in Figure 4. The total cost of 
our hardware is $80, which could be made both smaller and 
less expensive in a high volume commercial application.  

Wristband 
We made a leather wristband with 32 evenly spaced stain-
less steel electrodes (Figure 2). Each electrode measures 
3.4 × 15.3 mm. The average human forearm diameter is 
roughly 190 mm in circumference, suggesting an upper-
bound electrode width of ~6 mm in a 32-electrode configu-
ration. The band is secured to the user with a Velcro strap. 

Excitation Signal  
We use an AD5930 [7] DDS IC and an AD8220-based 
VCCS [5] to generate the EIT excitation signal. The 
AD5930 is configured to output 40 kHz sinusoidal waves 
(the same frequency used in Tomo [43]). This signal is then 
fed into the VCCS to output a constant 300 µA AC current 
(0–6 Vpp depending on the load impedance).  

Multiplexing  
Two 32-to-1 multiplexers (ADG732 [6]) connect the VCCS 
terminals to any two electrodes, forming the signal-
projection pair. Two more multiplexers connect the preamp 
buffer terminals to two electrodes to form the voltage-
measuring pair. In two-pole EIT sensing, we measure the 

voltage between the VCCS output and the receiver elec-
trode. In this case, the voltage measurement pair is the same 
as the signal projection pair. In the four-pole scheme, the 
voltage measurement pairs are different from the current 
projecting pair. Note the system captures the voltage differ-
ence between electrodes (i.e., we do not compare to ground). 

Analog Sampling 
We first amplify our signal with a preamp. The gain value 
is adjusted to maintain a consistent dynamic range when 
switching between four-pole and two-pole measurement 
schemes. We also use a high pass filter with a 15.6 kHz 
cutoff frequency to remove ambient EMI (e.g., from power-
line noise). The input signal is then biased by AVDD/2 
(1.65 V) and sampled by our microprocessor’s ADC at 
2 MHz with 12-bit resolution. 

Data Acquisition  
Once the multiplexer has selected the appropriate electrodes, 
we wait 100 µs for the DC bias on AC coupling capacitor to 
stabilize. We then collect 250 samples, or roughly five pe-
riods of the 40 kHz excitation signal (collecting multiple 
periods to reduce noise). The root-mean-square (RMS) of 
the samples is calculated to form a single measurement. The 
sensor then moves to the next measurement, reconfiguring 
the multiplexers accordingly. After it collects all values for 
the current frame, it sends the RMS measurements to a lap-
top over Bluetooth. The number of measurements and our 
system’s frame rate can be found in Table 1. 

Two-Pole and Four-Pole Measurement Schemes 
As noted in the introduction, the simplest EIT setup uses a 
two-pole scheme. In each measurement, one pair of elec-
trodes is used for both signal emission and voltage meas-
urement, and all pairs are tested for a total of Ne choose 2 = 
Ne(Ne – 1)/2 measurements. 

 
Figure 4. A schematic view of our system,  

illustrated with 8 electrodes. 

 
Figure 2. Our electrode band (left) and our EIT sensor  

worn on a user’s arm (right). 

 
Figure 3. Our EIT sensing boards. 

 

 
Figure 5. Two projection rounds in four-pole measure-

ment scheme with 8 electrodes. Higher voltage difference 
is shown with brighter color. 
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In four-pole sensing, separate pairs are used for signal pro-
jection and voltage measurement. The Adjacent Drive 
method [11,24] is the most common projection pattern – the 
signal is applied through one pair of adjacent electrodes and 
the voltage difference is measured between the Ne – 3 other 
adjacent electrode pairs. This is repeated for all emitter 
pairs, resulting in a total of Ne(Ne – 3) measurements.  

Figure 5A illustrates the first signal projection round for the 
four-pole scheme. The signal is emitted using electrodes 1 
and 2, and the voltage differences V1, V2, … V5 are meas-
ured sequentially with five electrode pairs: 3-4, 4-5, … 7-8. 
In the second projection round (Figure 5B), the next pair (2-
3) is used for emission, and the voltage differences are 
measured sequentially with another five electrode pairs. 
This process is repeated sequentially until a full loop as 
been completed (8 × (8 – 3) = 40 measurements).  

Baseline Calibration 
Although we endeavored to make our sensing board and 
wristband as consistent as possible, there are nonetheless 
small variations in the pathways to different electrodes. To 
prevent this from impacting our tomography, we must ob-
tain a baseline measurement of the impedance between all 
pairs of electrodes. With 928 electrode pairings in our four-
pole configuration, it was impractical to perform these cali-
brations manually (as was done for Tomo’s [43] 28 pairs). 
Instead, we calibrated our setup by wrapping the wristband 
around a homogenous, electrically conductive material and 
capturing one frame of data using our standard sensing 
pipeline to serve as a baseline. We experimented with a 
variety of materials: ground beef in Saran wrap, lean pork 
chop, cylinder of ice, saltwater bath and Jell-O, with the 
latter producing the best results. 

Interior Image Reconstruction 
We performed all interior image reconstruction on a 13” 
2015 MacBook Pro with a 2.7 GHz Intel Core i5 processor. 
The reconstruction algorithm was derived from the 
EIDORS toolkit [37], which provides a large library of dif-
ferent solvers. After preliminary experimentation, we chose 
the nodal one-step Gauss-Newton iterative solver, which 
produces a maximum a posteriori (MAP) estimate [2] of the 
conductivity at each node of the finite element mesh.  

This algorithm is parameterized by a single hyperparameter 
µ, which controls the smoothing of the output. In all of our 
experiments, we fix the hyperparameter value at µ=0.03 for 
the two-pole configuration and µ=0.001 for the four pole 
configuration. The solver requires a precomputation step, 
which takes about three seconds on our laptop; subsequent 
image reconstruction is carried out as a single matrix multi-
plication, taking 2.4 ms per image (numbers provided for 
32 electrodes, the most computationally expensive case).  

Hand Gesture Classification 
Since interior image reconstruction is sufficiently fast to be 
used in real-time system, we chose to derive machine learn-
ing features purely from the reconstructed images. Specifi-

cally, we downsampled the reconstructed images to 16 × 16 
pixels, and used the resulting 256 data points as raw fea-
tures. We used a support vector machine (SVM) implemen-
tation provided by the Weka Toolkit [18] for classification 
(SMO; polynomial kernel with default parameters).  

FIDELITY EXPERIMENTS  
We ran a series of experiments to evaluate the fidelity of 
our six different EIT configurations. These were designed 
to elicit fidelity characteristics of the tomographic output.  

Apparatus 
In order to analyze the quality of our tomographic recon-
struction, we needed a stable and known reference input. 
For this, we used a 20 cm diameter acrylic cylinder filled 
with 3 cm of saline water (9000 ppm NaCl, approximating 
the conductivity of human tissue). We used acrylic shapes 
to make different EIT “phantoms” [15,19,30] for testing; 
the impedance of these shapes is approximately 1017 times 
that of saline water at 25°C.  

Number of Interior Features 
We varied the number of the cylinders (2.25” diameter) in 
the bath from one to five to see how well different EIT con-
figurations can resolve distinct objects (Figure 6). As one 
would expect, as resolution increases, the ability to discern 
dense constellations of objects improves. For example, in 
both two- and four-pole sensing schemes, five objects are 
not discernable when using 8 electrodes. Even at 16 elec-
trodes, it is hard to separate them. However, with 32 elec-
trodes, all five objects can be readily segmented. Overall, at 
each electrode level, four-pole offers improved fidelity 
(particularly with respect to background uniformity) com-
pared to two-pole. 

Size of Interior Features 
Resolving the size of features is also important, as the hu-
man body has bones and muscles of varying cross-sectional 
size. Additionally, we wished to see if small features were 
detectable. To explore this, we tested our EIT configura-

 
Figure 6. Reconstructed images of bath  

with different numbers of objects 
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tions with circular reference shapes of three different sizes 
(1.5”, 2.25” and 3”). We used all combinations of these 
three objects as reference inputs. Output is shown in Figure 
7, showing the significant fidelity improvement offered by 
four-pole sensing. Specifically, both relative and absolute 
object sizes are clearly distinguishable in the 16 and 32 
electrode versions of our four-pole setup, while the two-
pole setup has difficulty even separating the two objects.  

Shape of Interior Features 
Unlike directional waves (e.g., X-rays), electric current is 
not confined to a path ray or a plane, and thus a change in 
impedance anywhere in the domain (not just along the path 
ray) will affect the measurement. Furthermore, this “soft 
field problem” [30] causes the electrical path to curve away 
from objects along the path, resulting in incomplete occlu-
sion (unlike the perfect occlusion from e.g. an optical mesh 
system [31]). Thus, shape recovery is particularly challeng-
ing for EIT systems. 

To test this property in our EIT setup, we used paired small 
and large squares, triangles, cylinders and rectangles (small 
size 1.5”; large 3”), as seen in Figure 8. As with our size 
experiment, two-pole sensing only discerns that two objects 
are present, but little other detail is visible. Four-pole per-
forms substantially better, with steady improvements in 
fidelity as electrode resolution grows. However, even four-
pole reconstruction with 32 electrodes does not resolve 
sharp edges (e.g., our triangle reference shape). We are very 
likely approaching the upper limit of what can be recon-
structed using low-cost EIT.  

Biological Reference 
While the various reference shapes used above are useful 
for controlled testing, they do not approximate biological 
tissue. Unfortunately, no one at our institution was willing 
to give us a cross-sectional slice of their arm to use as a 
ground truth. Instead, as a biological reference, we used a 
cross-cut lamb shoulder (Figure 9, left). This closely emu-
lates human tissue, and further offers reference features 
with more subtle impedance differences (unlike salt water 
and plastic, which are polar opposites with respect to con-
ductivity). As can be seen in Figure 9, two-pole sensing 
struggles with reconstruction at any electrode resolution, in 
line with our previous results. In particular, two-pole has 
trouble localizing the high impendence bone when it is 
roughly in the middle, yielding a bulls-eye-like impedance 
distribution. Four-pole does better, and with 32 electrodes, 
the bone and fat are both visible.  

USER STUDY 
The ultimate objective for our EIT system is interactive 
control. To evaluate the feasibility of the different EIT con-
figurations we support, we ran a hand gesture recognition 
user study. In order to compare our results with Tomo [43], 
we adopted its experimental procedure and gesture set 
(which were themselves chosen to be comparable to prior 
work). Specifically, we used a finger pinch gesture set: 
Index Pinch, Middle Pinch, Ring Pinch, and Little Pinch, 
and a hand gesture set, designed around coarse hand mo-
tions: Fist, Stretch, Right, Left, Thumbs Up, Spider-Man 
and Index Pinch. A relax gesture was included in both sets 
as the neutral state, resulting in a total of five pinch gestures 
and eight hand gestures.  

Participants 
We recruited 10 participants (four female), with a mean age 
of 23. The study took approximately thirty minutes to com-
plete and paid $20. All of our participants were right hand-
ed, so the sensor wristband was fitted to participants’ left 
arm (where a watch would usually be). Participants were 
seated for the duration of the study with their left elbow 
resting on a table. After participants felt comfortable, data 
collection began. 

 
Figure 8. Reconstructed images of bath  

with different object shapes. 

 
Figure 9. Reconstructed images of a cross-cut lamb shoulder  

with different EIT configurations. 

 
Figure 7. Reconstructed images of bath  

with objects of varying sizes. 
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Procedure 
We first collected data using four-pole sensing. Participants 
were asked to perform all 11 gestures, one gesture at a time, 
in a random order. While holding a gesture pose, the system 
automatically switched between 8, 16 and 32 electrode con-
figurations, with ten trials recorded for each (for a total of 
30 trials). This process took 15 seconds and our laptop 
beeped to indicate the participant could relax. We then 
switched to two-pole sensing mode, and repeated the same 
procedure. Thus, a round of data collection captured 10 
trials × 11 gestures × 3 electrode resolutions × 2 EIT 
schemes = 660 gesture trials.  

In total, we ran five rounds of data collection, yielding 
33,000 gesture trials (660 trials per round × 5 rounds × 10 
participants). To estimate the gesture recognition accuracy 
of our EIT system, we performed a post hoc, leave-one-out 
train/test experiment. Specifically, we trained our classifier 
on four rounds of a user’s data, and tested on the fifth (all 
combinations). This ensured that any two data points close 
in time (which naturally tend to be more similar) were ei-
ther in the test set or the training set, but never both. 

RESULTS AND DISCUSSION 
There are several high level conclusions to be drawn from 
our results. First, increasing electrode count strictly im-
proves recognition accuracy (roughly +3.8% when moving 
from 8 to 16, and +1.5% when moving from 16 to 32). Sec-
ondly, four-pole handily out-performs two-pole sensing (on 
average, 6.8% better across all electrode resolutions and 
gesture sets). Interestingly, four-pole recognition accuracies 
do not dip when combining hand and pinch gesture sets, 
which suggest they are complementary. Unsurprisingly, our 
best performing configuration is four-pole sensing with 32 
electrodes; on the 11-gesture hand+pinch set, it achieves a 
mean accuracy of 94.3% across our ten participants – a 
67.8% reduction in gesture recognition error vs. Tomo [43]. 
Figure 10 provides an overview of these results. Overall, 
our results suggest EIT is competitive with more mature 
bio-sensing input methods, including bioacoustics (e.g., [3, 
14,21]) and electromyography (see e.g., [33,34]).  

Although four-pole sensing with 32-electrodes yielded the 
best accuracy, at 3 FPS, it is less suitable for interactive 
control. Instead, four-pole, 16-electrode sensing at 16 FPS 
might be the right balance between accuracy and interac-
tivity. Of course, this framerate limitation is due to our pre-
sent prototype, and is not inherent in the sensing approach. 
Future EIT systems could achieve higher framerates by 
using higher frequency excitation signals, faster ADC sam-
pling, higher bandwidth communication, and similar.  

CONCLUSION AND FUTURE WORK  
A significant consequence of increasing electrode resolu-
tion is that the electrodes must also be smaller, reducing the 
contact area with the skin. This makes the electrodes more 
susceptible to variation in skin contact condition, which 
will impair tomography techniques. Fortunately, four-pole 
sensing is more robust to this effect, and would therefore 

allow for even higher resolution arrays. Our results show a 
clear upward and sustained improvement in accuracy as 
electrode count grows, suggesting that moving to e.g., 64 
electrodes could offer further improvements in accuracy. 
However, new technical insights would be needed to 
achieve interactive speeds. Additionally, given that EIT has 
a soft-field problem, there are bottlenecks on sensing reso-
lution that cannot be resolved by simply increasing elec-
trode count. For example, some gestures involve similar 
muscle groups and movements, and thus are hard to differ-
entiate irrespective of resolution.  

Currently, we only recognize discrete hand gestures. How-
ever, we have analog data of muscle movement inside the 
arm, and so we believe it may be possible to build a contin-
uous kinetic model using regression. In addition, with our 
improved sample rate and tomographic resolution, it may 
be possible to capture biometric data (e.g., smartwatches 
that auto-authenticate when worn) and bio-factors (e.g., 
bone density, pulse, and blood pressure). Medical-grade 
EIT systems have shown this to be possible [8,19].  

To facilitate comparison to prior work, we deliberately 
adopted the gesture set used in Tomo [43]. However, our 
system is not limited to these gestures, and it is likely that 
other gestures can be detected. Alternate gesture sets may 
even provide better recognition accuracies, and future work 
could explore a wider variety of gestures to find those with 
distinctive EIT signatures. Further extending Tomo, future 
iterations could explore other sensing locations, including 
the face, throat, legs and feet, which would require new 
electrode form factors. 

Finally, there are also technical improvements we wish to 
explore. For example, using (or combining) different exci-
tation frequencies could yield better reconstructions [35]. 
Swept frequency excitations may also be possible. We also 
want to try the “auto rotation” approach proposed by Amma 
et al. [4], which demonstrated a high-density EMG sensor 
band that automatically detected the orientation with re-
spect to the arm. This orientation data was used to digitally 
rotate the signal in order to provide robust classification no 
matter how the user wore the device.  
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Figure 10. Accuracies for three hand gesture sets (left: Hand, 

middle: Pinch, right: Combined) across different EIT configu-
rations. Numbers below bars are electrode count. 
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